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Protons lost in a ring leave at a few preferred locations, deter- 

mined by some non-linear property the dipoles. This paper suggests tak- 

ing control of lost protons by beating the magnets at their own game - by 

means of a designed resonance used aa a beam scraper. It is a study of 
suitable resonances, including estimates of the required multipole element 

strengths. The appropriate resonances are two-dimenrrional and not much 

has been written about them because ot their four-dimensioned phase 
space. A large number ot figures is included to help penetrate the 

mysteries. 
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Protons “lost” from a beam in a high energy ring tend to strike the 

vacuum wall at a few preferred places, presumably as a result of the pattern 

of non-linear field at extreme amplitudes. This process is not well understood 

and the preferred locations cannot be controlled. It does depnd on machine 
parameters and the locations are unpredictable for major changes. For super- 

conducting rings this concentration of losses greatly increases the probability 
of magnet quenches on small beam loss; for colliding beams experiments it may 
create an intolerable background if one of the locations is near a low-beta 

region. 

In low energy rings beam scraping -pushing the beam slowly against an 
internal “target”- has provided a (somewhat) controled way of disposing of 

unwanted, large amplitude beam. In high energy rings scraping is ditticult 

because the small, penetrating beam traverses only the salient edge of the 

target which acts as a beam scatterer instead of a beam stop and losses at 
the preferred places are enhanced. A good scraper would be most useful, for 

example one could create narrow beams tor probing field problems, as well as 

providing quench and background protection. 

The basic idea in this paper is to beat the beam to the punch by pro- 

viding a designed resonance which is eftective at much less than extreme 

amplitudes and which directs the “lost” protons to our own caretully designed 

“preferred location”. The actual scraper then is the resonance separatrix, 
which is very sharp and has no radiation thickness. 

This paper investigates the properties of some resonances that could 

well serve as practical scrapers, in general two-dimensional resonances. The 

choice of resonance depends on details of space availability in the lattice and 

is perhaps impossible within the constraints of the Doubler, but new rings 
could easily incorporate a separatrix scraper into the general process of beam 
disposal. 

The Basic Idea 

We describe beams in beta space where all amplitudes and displacements 
use a reference f10 (100 m. for the Doubler). To obtain real displacements one 
must multiply by (,8/B.)“. [This is also the “conversational” space for rings - 

if I say that the amplitudes are 8 and 10 mm for horizontal and vertical, then 
one expects maximum displacements of 8 and 10 mm in the arcs, but of course 

one will be in the F quads and the other in the D’s. It would be confusing to 

say 8 and 5 mm in the F’s, which is the same thing.] 



In beta space the equations for linear motion are simple 

x = a COB $3 y = b cos 8 
x’=-asin 9 y’ = - b sin 8 

and these define my terminology. 

Proton beams are suprisingly gaussian and much the same size in horiz- 
ontal and vertical, that is the beam density measured as a function of x and 

measured as a function of y are both normal die- 
tributions which have the same CT when adjusted 

to 80. The amplitude a = (x* + x’*)@ is a circular 
normal (Rayleigh) distribution with zero for a = 0 a 

and a maximum at (r. The combined distribution 
for a and b is shown in figure 1. The important 

point is that large a with small b is not common, x 
or vice-versa, but a = b is important. Any mult- 

iple scattering process, like gas scattering, in- 
creases C. Large but rare single scattering6 pro- I 
duce a wide, thin pedestal which must have much 

the same type of distribution. 
figure 1. 

Figure 2 shows how one might apportion the linear betatron space to 
the various stages of resonant scraping. The high 
energy beam in the lower corner extends about 2mm 

( Q = 2/3mm). The line from 6mm to 6mm is an adiabatic 
separatrix from one of the later examples. The pos- 
ition can be adjusted downward by tuning closer to 
the resonance. This line is the stability limit for slow 

tuning (or slow emittance growth). Protons beyond 
the limit leave along the sloping trajectories. Note how 

all particles approach the same ratio of a to b. The 

growth per turn increases rapidly. A proton that just 

fig. 2 Scraping 
misses the target will strike at the dotted line (after 

-7 turns), about 4mm into the target. Just as in 
extraction, it takes a lot of “good” aperture to develop a good separatrix 

scaper. 

This device can operate in two ways. First one can, at regular inter- 
vals, remove halo by tuning towards the resonance and then away. It is 
presumed that this periodic cleaning would inhibit background but this re- 
quires such a special set of growth times that it is questionable. (Sharpening 
a beam at low energy would be done this way.) 
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A much better mode of operation would be to leave the separatrix in an 
intermediate position, as in the diagram, and to use a resonance which has 

very little effect at beam amplitudes. This mode provides protection against 

any moderately slow (msec) loss. The beam-beam interaction is very short 

range and will have no effect at the separatrix, for example the infamous 

tune-shift applies to m amplitudes and practically vanishes at 3~. 

The similarity to extraction is striking but there are important dit- 

ferences. Extraction primarily selects particles on tune variation with mom- 

entum (chromaticity), whereas we want to select on betatron amplitude with 
the chromaticity zero (for amplitudes near the separatrix). Furthermore ex- 
traction does not much care about eftective emittance dilution for particles not 

yet extracted (it might help), but we most certainly do. Finally we must 

scrape in both dimensions, which somewhat complicates the expanding trajec- 

tories and would be an unnecessary complication for extraction. 

The F&aonancas 

Figure 3 is a tune plot showing the resonances that we will consider. 

The dashed lines are resonances driven by skew 
multipoles and they are identical to their normal 

counterparts with YI and YY interchanged (also a, b 
etc.). The label 3,2 indicates 3vx+Zvr=integer. The 

label 4-1 indicates 4vrvsint., an octupole non-linear 

coupling. One resonance which would be ideal, the 

octupole 2vr+2vr=int. has been omitted because this is 

the only resonance guaranteed to affect beam-beam 

Fig. 3 Tune Plot 
interaction. Operation near l/4 is prohibited. We will 
also ignore the one-dimensional resonances (3vx and 

5vr). For these resonances to scrape all large amplitude protons would 
require coupling horizontal and vertical so that amplitudes exchange slowly 

but almost completely. This requires a weak coupling and tuning very close 
to ox = vr, which is well into the “circle ot contusion” where many resonances 

coincide. This is not a reliable operating condition and is probably a bad 

tune from beam-beam considerations. 

These resonances are 4-dimensioned creatures which makes their prop- 

rties difficult to see and we will rely on diagrams for comparisons, but 

summaries of the equations are included for more serious study. You may 
want to consult the companion paper Resonances and Resonance Width tor a 
better introduction. First we must define some terms. 



We will use sextupole and d-pole magnets. The strengths are 

(Sl), B, = S (x?... and (Dl), B, = D (xi.. 

The resonances are m~x + no, = integer t (m* t n*)* 6 

where 6 is the perpendicular distance on a tune plot from the resonance line. 

There is a combination phase angle for each resonance 

(1~ mcp t na with 6., = Zn(m’t n*J+% extra phase per turn. 

Resonances are examined turn-by turn. Non-linear effects average out 

except for the resonant component which accumulates for many turns because 

6. is small. To make this componenet effective we must use a pattern ot 

multipole magnets (Ml) which accentuates the driving terms, sums for one turn 

A = Me/(Bp)) C(h=w=lMl)a COB u. B = . . . ..sin a, 

h = fBx/,%P v = kwb¶o)” 

Usually we choose our “observation point” so that B = 0, A nos. to simplify the 

expressions (this is only a phase shift in (x and has no other eftect). Note 

that the driving terms are dimensioned, we will use (per cm.) tor A from 

sextupoles and (per ems) tor A from decapoles. [Thirds resonances arising 

from decanoles have a difterent dependence on h and v. These forgotten 

resonances are strong and provide an important scraper. Details below.] 

With the aid ot the driving term one can express the motion in small 

changes per turn (ditterentiale) as a tunction a, b, 1x, and 6, at the start ot 
the turn. Betore doing so however it will be convenient to express a, b in a 

scaling unit ao which is chosen to make the resonance diagrams easy to 
COtllpfWf3. These units are of the form 

60 = c S/A (sex.) or a,2 q c 6/A (dec.) 

where c is a constant. (~0 will subsequently be set near 1 cm.) 

We can always combine the equations da/dN and db/dN to find 

n a* t m b’ = F the “family” constant. 

These are hyperbolas on an a-b plot. A proton under the intluence of this 

resonance never leaves its tamily line. We use this to analyze the resonance 

properties tamily by family. Each family is ettectively one-dimensional. 

There is a line of fixed points, combinations of a, b, (and ti = 1800) for 

which a, b, and a do not change. We can also construct a constant of the 
motion which gives trajectories in phase space. The most important is the 

trajectory that contains the fixed point, the eeparatrix. Fixed points and 

separatrices vary from family to family. 



3vr + Zvr = int + 6413 decapole 

A = &/BP) ~(h3vp(Dl))s co6 as 
803 q 26.1~ 

da/dN = (6,/4) 3&b* sin cz 
db/dN = (6,/4) 2aJb sin a 
da/dN = (&,/4)((9abn + 4e3) COB (x t 4) 

Za - 3b’ = F fm. 
gab* t 4aa = 4 fxd. pt. 
(3/Z) aJb* coa a t aa t ba = con& 

3.2 ~-es. (dec.) 

The straight line is F = Cl (slope r/(3/2)). The fixed-point line is the 
outer one from a = 1, the inner one is the adiabatic limit. 

I : i 

/“““:1.1:.,::,,::,: ,:::~~,‘:‘~::~~::::‘~:::I:::‘:~;~ /r- 
Ok 1 ,~ ..,.. .,....., 

P LB0 360 Q- 
Trajectories F = .5 (az.5, b=O 

The darker points are for 

a, lighter for b. The fixed 
point is at the cusp at 1800. 

The eaparatrix is solid, and in- 
cludes an upward branch. The 
incoming branch has been omit- 

ted for clarity. Beyond the sep- 
aratrix cx reverses and particles 
leave near 90°. Small ampli- 
tudes (as.5) are almost unaffec- 
ted. 

Consider a stream of particles, of this family, moving just below the 

aeparatrix. If one slowly tunes away from resonance they will settle to 
constant amplitudes, still on the family line, preserving the phase volume. 
These are the adiabatic amplitudes plotted above and are the best measure of 

the stabitlity limit. They are found from the average of a*b* along the 
separatrix. The line is plotted from such computations for many families. 

Note that the usual pair of plots x-x’, y-y’ would not give any indi- 

cation of the nature of the resonance because 9 and B continue forward 
without any apparent change even when a reverses direction. 
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We now turn to the eextupole driven VI t 2vr resonance which has a 
new quirk of interest. The a - b plot is on the opposite page, and one sees 
that it is an ellipse from 0,O to .5,1 to 1,O. Family lines with F neg.ative, that 

is above the straight line F = 0, will have two fixed points. The upper point 
is normal and locates the separatrix, the lower point near a = 0 does not have 
any connected trajectory but lies inside a special “locked” region (not really 

a coupling because a and b go up and down together but the effect is much 
the same). The darker part of the fixed point line terminates at F = -.5, 

which is the family line from 0,.707. The special property of this family is 

shown in the figure below. 

m 

F = -.5 (ad, b=.7) 

For this family all part- 
icles are unstable or locked in 

the island, which extends from 

a = 0 to the fixed point. On 
adiabatic tuning particles do 

not enter the island so this 

family is a stability limit. The 
phase volume of the islands are 

subtracted from separatrix vol- 

ume when computing the adia- 
batic stability line. 

During a faster tuning some particles do enter and leave the island 

which modifies the amplitudes. There are however very few particles with 
small a and modest b, as pointed out above, and the emittance dilution is in a 

region where it doesn’t much matter. The primary nuisance from the islands 
is the distortion of the trajectories moving around them. 

Any resonance with m = 1 will have islands near the b-axis, and with 
n = 1 near the a-axis, so we will see something similar for YI + 4v~ and even 

for the octupole coupling resonances. 



=I t Zu, = ink t 645 sextupole 

A = (/3./Bp)~(hva(Sl)), co8 as 
aa = &/A 

da/dN = (6,/4) b’ sin a 
db/dN = (6,/4) 2ab sin a 
da/dN = (s./4)(bl/a t 4s) toe (x t 4) 

2a= t b= = F fam. 
b’ t 48’ - 48 = 0 fxd. pt. 
(3/Z) ab* COB a t ~9 t b’ = con&. 

F = -.25 (b=.5, a=O) 

I 3bQ o( 

b 

I,2 l-es. (sex.) 

There is a “locked” region 
near a = 0, which is normally not 

populated. The principle effect 
is distortion of d small a 
motion. 

This side has no “island” 
and is smoother (for small b). 
One should compare this dia- 

gram to any of the decapole 
cases, which are much smoother. 
A higher dependence on ampli- 

tude would be very helpful. 

F = .5 (a=.5, b=O) 



v*t4v,=int.ts~17 decapole ’ / ,’ ‘I(/ / / 

8 = (Bo/Bp)Zfhti fDl))s COB ~llr 
ad = Z&,/A 

da/dN = C&/8) b’ sin a 
db/dN = t&/8) 4abs sin a 
da/m q (s,/s)((b’/a t 16ab*) COB (x t 8) 

0 : 
0 .s . 1 

1,4 res (dsc) 

4a*t b*=F fam. 
b’+ 16&b’- 88 q 0 fxd. pt. 
(5/4) ab‘ COB a t aa t b* = con&. 

F = -.25 F = -.25 (b=.5, a=O) (b=.5, a=O) 

l-.~.-,.-...-.~.-..‘.-...~.~.-~~.~-.~~-~~~-~.-~.~-~f..~-~~-~~.-.~.-~...-.~~-~...~~...~....~.~...-.. 
01 4 IBII s&e Q 

F=l (az.5, b=O) 

This resonance also has a 
“locked” island near a = 0 but 
because of the amp3 dependence 

it has almost vanished at this b. 

The flattest trajectories! 

Unfortunately the adiabatic limit 
is wide open in the a direction 

and there is no point using this 

resonance instead of one of the 
others. 
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Thirds resonances come quite naturally from decapoles for example in 
one dimension we find ourselves expanding 

cod $4 = (1/16)(coa 59 t5co.9 3+.... 

and there it is, with a fat multiplier yet! Again to find one of our reso- 
nances, I used 

Bx = D (...6xaya B, = D (...4.+y 
expanding co& COS’B = (1/16)(cos 3vtzt9 t 3cos $9+2e t .a. 

and for the other resonance I used 

Br = D (my’ B, = D (...4xya 
expanding COB 9 COS’B = (l/lti)(cos vt4e t 4cos @2x9 t .a. 

and both contribute to VI t 2~~. 

We now face four driving terms 

Au ..h+’ co8 a, Btr ..h+’ sin Q, AM ..h+ coa a, BM . ..h+ sin a 

which look familiar but now cx = ~0 t 28. Only one term can be eliminated by 

shifting (Bu). I will simplify the problem by defining 

asa = &/A., An = Z/3 Ao, AM = iA., Blr = 0 
z AM =O, BH = ~AAO 

The fractions are a friendly choice which happens to make the adiabatic 
separatrix approximately symmetric for a and b. The two examples are for 

driving terms “in phase” and “out of phase”. Fortunately the diagrams are 
very similar. 

The diagrams have “families” (and phase angles) like VI t ZVJ, as they 
should, but all other lines are just like a superposition of the two previous 
decapole resonances, with 3v~ t ZVU dominating at low b and YX t 4~7 at low a, 

which is great. This is even more apparent for the out-of-phase case. 

In the out-of-phase case we can no longer use toe (x = -1 for the fixed 
points. In fact one must choose 9 = tan-I(-b’/Za’) which keeps shifting along 

the line. Actually one must be in the correct quadrant so 

sin (p = -2&/(4&t b’)@, COB 9 = b’/(4a’ t b’)“* Pxd. ptm. 

This kind of phase-shifting is endemic, when a dominates (and therefore Art) 
then the phase is as usual, but when b dominates features are shifted 900 

earlier because BM dominates. This causes only one minor operational change: 

the asymptotic exit phase is 4P instead of 900. 



YX tZv, = int. t 645 decapole, in-phase case 

ASS = Z/3 Ao = (fi~/Bp)~(hJv*(Dl))~ COB as 
AM = l/2 A. = (,8o/BflJz(hv’(Dl))s cos as 
ad = 6,/A. 

da/dN = (6JB)(Zalb* t b’) sin (x 
db/dN = (6,/8)(4esb t 2abJ) sin CI 
da/dN = (6,/8)((8a5 t 14ab’t b’,fa) COB (I t 8) 

2a*- b*= F fam. 
Ed t 14a=b= t b’ - 8a = 0 fxd. pt. 
(3/4)(2a*b* t ab‘) COB (x t a* t b* = con& 

.s . I 

in-phase 

On the a - b plot one ‘sees 
a very good shape for the adia- 

batic stability limit. This plot 

shows a small “island” and flat 

trajectories similar to the 1, 4 
resonance. The fixed point amp- 

litudes are different primarily 

because the family lines have a 

F = -.25 (b=.5, a=O) 
different shape. 

On this side the trajec- 

tories resemble the 3, 2 decapole 

resonance. All in all an excell- 

ent resonance for scraping. 

,...... ~~., 

0 

F = .5 (~5, b=O) 
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ux + 2vr = irk t 645 decapole, out-of-phase mse 

AS’ = Z/3 A. = k%/Bp)~(hS*(Dl)). toe a 
BI’ = l/2 Ao = (,80/Bp)z(hv’(D1))S sin ci 
8x9 = S./A0 

da/dN = (6,/8)(2&b* sin a t b’ cos a) 
db/dN = (6./S) (4asb sin a t 2ab’ COB a) 
da/dN = (S./S) (@a3 + 6sb*) cos a - (b’/a t 8abl) sin a) 

Za’- b*=F fam. 
16s~’ t12a’b’ t Ba*b’ t b’ - 8s(4s’ t b’)M = 0 f.p. 

(3/4)GWbr COB CY - ab’ sin a) t a* t b* = con&. 
.5 

out-of-phase drivers 

1::::;::::::;:::::~:: :::::: ---;,.,.;:-&.. ._........... . . . . . . . “‘.” .....-. 
..__........_. t ._................. I 

F = ~25 (b=.5, ~0) 

1 

.3 

t,::;;:::l;::::::;::i:: . . . . . . . . ..~~.......t::::::1:~:::::::;::~::1::::::~::: 
III I I I 

4 sbo s&l Q 

F = .5 (az.5, b=O) 

The important point is the 

similarity of the a - b plots for 

this case and the in-phase case 

on the previous page. The tra- 
jectories show some interesting 

phase shifts from BIG instead 
of AM. 

Note that the exit (x is 

now approaching 45O instead of 
the usual 900. Otherwise the 
phase shift has no effect on 

performance, but it does compli- 

cate the arithmetic. 
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On Coming Out 

The magnitude of the driving term determines the step spacing for exit- 

ting protons. It must be large enough to make clean hits on the target but 

not so large that protons just missing are lost before they again have max- 

imum displacement at the target. Once the driving term is chosen the tuning 
sets the amplitude level for the separatrix. We can make good estimates of 

these quantities by assuming that sin a = 1, F = 0, and using the differential 

equations. In fact COB (x + 0 on exit because it is multiplied by a higher power 
of the amplitudes in the constant-of-motion expressions; also the families lines 
converge on the F = 0 straight line. 

Let me assume for purposes of comparison that the target is a distance 
r = (aa f b*)e q 1.2 cm. from the center along the F = 0 line, that a proton just 

missing returns to the target in 10 turns (tunes near .4, .3), and that it 

should then be at r = 1.7 cm. I also assume that ao = .6 cm (1 on our 

diagrams) for the separatrix. In these expressions dimensions are in cm. but 

are still in beta space: 

vx+2v,, aextupole 
da/dN=(A/4)b*sin (x 
da/dN= (A/2).8 (sin TV = 1, F = 0) 

dr/dN= (a/2) r*/d3 (r = as/3) 
(l/r.) - (l/m) = NA/243 

A = .086/cm. (1.2cm., 1.7cm., 10 turns) 

2ns*/ti=Aao (from before) 
S=.tW36 (a. =.6cm.) 

These are comfortable values. The driving term A can be implemented 

using correction style elements. 

3v,t2v,, decapole 
da/dN= (A/8)3aaba sin a 
da/dN= (A/4) a' (sin a = 1, F = 0) 
dr/dN= (A/4) (3/5)1.5r' (r = a r/(5/3)) 
(lh3) - (l/m3) =.349A N 

A = .103/ems (1.2cm., 1.7 cm., 10 turns) 

2n6+/13=AaoJ/2 
S=.ooO5 (so=.6cm.) 

5 comfortable. decapoles are 5 20 times harder to build. 
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z+ + Zv,, decapoles (in-phase case) 

da/dN = (Ao/8)(2aaba t b4) sin a 
da/dN = Ao 84 (sin a q 1, F q 0) 
dr/dN = Ao 19343 (r q ar/3) 

(l/r.J) - (l/rw3) = NAo/l/3 

A. = .066/cmJ 
An = .044/cmJ, Al4 = .033/cm’ (1.2 cm., 1.7 cm., 10 turns) 

2~ 6r/5 = Ao ad 
6 = .oolO (a. = .6 cm.) 

The out-of-phase case gives the same result. We have gained a factor 
of 21 compared to the usual decapole resonance above, and we need it. 

The following is an example of an arrangement of decapoles which pro- 
duces the driving terms for this resonance. I assume 600 cells: 

F D F D F 

(Dl) -1 -.6 1 .6 -1 

9 t 28 -180 -90 0 90 180 

hSv’ l/3 l/343 l/3 l/3+/3 l/3 
hv’ l/9 l//3 l/9 l/r/3 l/9 

Au=1 En = .4/%/3, - 1.03 e 130 

AM = l/3 BM = 1.2/43, - 0.77 8 640 

The ratio is correct (accuracy not required). Our “observation point” 
will be 13O downstream (in a) from the centrei quadrupole. The unit decapole 
will be (Dl) q 1.3 T/cm3, or 100 cm. long and .013 T/cm’. At a 4 cm. radius 

the field would be 3.3 T, which practical but is not a “correction” element. 

It is interesting to note that the driving terms from this array for the 
regular resonances 5,O 3,2 1,4 ape .0017, .005, and .015/cm3. The small 

value for the 5v~ resonance is important if our operating point is near .4,.3 . 
A proper design would be much more sophisticated (see Distortion Functions 

for a design procedure for avoiding non-resonant effects). 

With an exit angle C% = go”, significant combinations are 

q= 30 8 = 30, or 2100 

pp = 150 a=330, *I- 1500 

@=270 B = 270, or 900 

because a target 150, 30, or 900 downstream (r9 and (p) will be at maximum 
displacement in x and y, 
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Comments and Conclusions 

Decepole driven resonances are hard to implement, and unless there is 
some serious tuning problem one would only consider the decapole Y= t 2vY 

resonance. The advantage of decapoles is the undisturbed beam permitting 

continuous scraping. 

The BeXtUpOh driven resonance is relatively easy to implement and 
would probably work very nicely for intermittent scraping. One wonders 
whether the beam distortion might be tolerable for continuous scraping. 
Possible problems can arise at four different levels. 

The first problem could be that a single beam does not work well close 

to this resonance, with or without the scraping turned on. One problem to 
remember is that second-order tune-shift from sextupoles can be enhanced by 

the first order distortion. If problems arise Prom random field errors then it 
is possible to “clean-up” the particular tune area, however if they arise from 

systematic elements there may be a conflict which cannot be resolved. One 
should remember that systematic effects will be very different when the low- 

beta sections are turned on and the ring loses all symmetry (in phase space). 

The simplest of the beam-beam effects is that the distortion degrades 
the beam density. I estimate that when using the 6 mm level of scraping the 
decrease is small, and would be compensated by less than 1% decrease in ,&u. 

It is possible that the beam-beam effect finds this particular tune 
disturbing (without scraping on) or, conversly, the scraping resonance finds 
the peculiar tune-shift curve from beam-beam interaction disturbing. Both of 
these problems could more easily occur if one tunes to the wrong side of the 

resonance where the beam-beam tune-shift, which is large only for small 

amplitudes, is towards the resonance. For P-P one should tune on the high 
side. 

Finally it is possible that the multipole field from the scraper driver 
combines with the non-multipole field of beam-beam interaction to create 

strange effects. This is clearly an effect that cannot be analyzed, which is 
why it is a popular explanation for beam-beam problems when analysis fails to 
find any problem with the beam-beam interaction itself, as it does for protons. 

It may even be real, in which case a failed scraper experiment would be a 

great success. 

My suspicion is that, with a little preliminary prophylaxis, none of the 

above will occur. 
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There are some obvious limitations to the type of analysis in this paper 
for the exitting particles. The basic assumption that non-resoant terms will 

average out in a few turns is no longer meaningful. Driving arrays that loc- 

ally cancel non-resonant distortion, such as cos 9 compenents when creating 

COB qt2r9 components, will produce trajectories much like the above. Tracking 
studies are needed for precise design of the actual trajectory. It may be 
possible to split the drivers on either side of the target and to gain an ad- 

vantage Prom a w non-cancellation of the other terms. 

Conversion from beta space to real space provides an opportunity to use 
any higher betas that are available. The above analysis was for arrays of 

normal elements which emphasizes vertical displacement at the target. Skew 
components work just as well and reverse the role of a and b and also 8. and 

BY. 

There are probably better ways to tackle resonant scraping. There is 
much room for invention and design. The hope is that this paper will stimu- 

late both theoretical and practical interest. I am sure we all agree that the 

dipoles should no longer be permitted to dictate where protons are lost, 

particularly in a superconducting ring with an excellent aperture, and with 

the forefront experiments. 


